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Abstract
Crop growth and yield monitoring over agricultural fields is an essential procedure for food

security and agricultural economic return prediction. The advances in remote sensing have

enhanced the process of monitoring the development of agricultural crops and estimating

their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to

predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural

scheme located in the EasternRegion of Saudi Arabia. Landsat-8 and Sentinel-2 satellite

images were acquired during the potato growth stages and two vegetation indices (the nor-

malized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI))

were generated from the images. Vegetation index maps were developed and classified

into zones based on vegetation health statements, where the stratified random sampling

points were accordingly initiated. Potato yield samples were collected 2–3 days prior to the

harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction

algorithmswere developed and used to generate prediction yield maps. Results of the

study revealed that the difference between predicted yield values and actual ones (predic-

tion error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and

10.2% for Sentinel-2 images. The relationship between actual and predicted yield values

produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between

0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation

in field productivity across the three fields, where high-yield areas produced an average

yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t

ha-1. Identifying such great variation in field productivity will assist farmers and decision

makers in managing their practices.

Introduction
Achieving the maximum crop yield at the lowest investment is an ultimate goal of farmers in
their quest towards an economically efficient agricultural production. Early detection of
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problems associated with crop yield can greatly help in reducing the loss and reaching the tar-
geted yield and profit. Potato is classified as being the fourth major staple around the globe,
which is still quickly attaining importance [1]. The growing interest in potato, along with the
diminishing agricultural lands, introduces the need for germplasm yield enhancement, better
crop protection and much more efficient and productive management systems. Prediction of
potato crop yield prior to the harvest period can be very useful in pre-harvest and marketing
decisionmaking.Many studies [2, 3] showed that traditional methods of crop yield estimation
could lead to poor crop yield assessment and inaccurate crop area appraisal. In addition, these
methods normally depend on rigorous field data collection of crop and yield, which is a costly
and time-consuming process.

Remote sensing (RS) and global positioning system (GPS) technologies can be used to assess
the temporal variation in crop dynamics, including crop yield and its spatial variability [4]. Vis-
ible (blue, green and red) and near infrared (NIR) portions of the electromagnetic spectrum
have already proven their effectiveness in accessing information on crop type, crop health, soil
moisture, nitrogen stress and crop yield [5–13]. Advancement in RS techniques enhanced the
use of multispectral images as an effective tool in determining and monitoring vegetation con-
ditions, crop stress and crop yield prediction. Liu and Kogan [14] revealed that remote sensing
data offered exceptional spatial and temporal land surface characteristics, including the envi-
ronmental impacts on crop growth. Numerous studies have reported that there could be a
good correlation between the vegetation indices provided by the RS techniques and the crop
yield and biomass [14–17]. A crop yield research that is conducted at a regional scale, which
employs coarse or low-resolution satellite images, can provide a broader information on the
crop canopy conditions and crop yield estimates. Hence, decisions in the quantitative export
and import of the product within the region could be made in assured way.

Prediction of crop yields is typically associated with certain agronomic variables (density,
vigor, maturity and disease), which can be used as yield indicators. Remote sensing offers a
close diagnosis of plant health; however, the spectral reflectance of the crop is dependent on
phenology, stage type and crop health. Several studies [4, 6, 18–22] have focused on crop
growth analysis using normalized difference vegetation index (NDVI) to enhance precision
agriculture. Research in plant life monitoring has proven that NDVI is associated with the leaf
area index (LAI) and the photosynthetic activity of crops. The NDVI is an indirect way of mea-
suring the primary productivity through its quasi-straight line relation using the Fraction of
Absorbed Photosynthetically Active Radiation (FAPAR) [23] and [24]. Also, Baez-Gonzalez
[6] used Landsat ETM (enhanced thematic mapper) data with an NDVI model to estimate
corn yield, where a prediction error of 9.2% in the yield was determined. Yang [25] used the
United States Department of Agriculture (USDA) EPIC model to predict yield, where the dif-
ference between recorded and predicted yield was less than 10%. Baez-Gonzalez [18] modeled
a corn yield with NDVI generated from NOAA Advanced High-Resolution Radiometer
(AVHRR) images. A study by Gopalapillai and Tian [19] reported correlation coefficient (r)
values varying from 0.13 to 0.98 for predicting corn yield from nine different fields using a
span of two-year datasets. They used aerial pictures of the corn plots and calculatedNDVI to
predict yield, where the average correlation coefficient (r) between the NDVI and the yield
over all the nine fields was determined at 0.54. On the other hand, soil adjusted vegetation
index (SAVI) was used in some studies as it showed a tendency to minimize soil brightness, a
phenomenon which has been addressed by Miura [26] and Lamb [27]. Jayanthi [28] carried
out research on yield estimation of potato integrating the SAVI from high resolution airborne
multispectral imagery and developed various yield models. Huete [29] introduced a soil cali-
bration element in the NDVI equation to take into account the very first order optical interac-
tions between soil and vegetation. Bala and Islam [30] used TERRAMODIS images to estimate
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a potato yield, where a prediction error of 15% was determined using ground truth data col-
lected from 50 fields.

In addition to providing a decision support tool and revenue expectation, the predicted
yield maps can be used as spatial databases for the implementation of variable rate technology
(VRT) systems to achieve a precise application of field-level inputs in order to optimize pro-
duction across the entire field. Therefore, this study was designed to provide a means of early
prediction of potato yield (i.e. prior to the harvest period) using multispectral satellite remote
sensing on a field scale. However, the specific objectives of this study were (i) to obtain an
empirical equation for the early prediction of potato yield using multispectral images in con-
junction with field collected potato yields, (ii) to determine the suitable growth stage for early
prediction of potato yield, and (iii) to classify the obtained yield maps into distinct zones for
the implementation of precision agriculture activities.

Materials andMethods

Study area
This study was conducted on three 30 ha center pivot irrigated agricultural fields of Saudi Agri-
cultural Development Company (INMA) inWadi Al-Dawasir area south of Riyadh, the capital
city of Saudi Arabia. The study area was located within the latitudes of 19.90° and 20.33° N and
the Longitudes of 44.81° and 44.95° E (Fig 1).

Wadi Al-Dawasir region is one of the major irrigation water abstractions from Al-Wajid
Aquifer. Agriculture in this region is dominated by developed agriculture enterprises that oper-
ate modern pivot irrigation systems. The size of the center pivot fields varies from 30 to 60 ha,
where one farm can contain hundreds of fields irrigated with a number of aquifer wells. The
main crops grown in winter are wheat, potato, tomato and melon. Fodder crops, including the
biennial multi-cut crops of alfalfa and Rhodes grass, are grown throughout the year; however,
inactive during winter. Meteorological features of the region are speckled.Diurnal temperature
varies from 6°C (winter) to 43°C (hot summers) with an annual mean temperature of 27.4°C.
The mean annual rainfall is around 37.6 mm [31].

Satellite Images
Cloud-free satellite images of landsat-8 and sentinel-2 (Table 1) for the study period (January
26th, 2016 to March 14th, 2016) were downloaded from the archives of USGS Earth Explorer
website (http://earthexplorer.usgs.gov/). Landsat-8 (the Operational Land Imager (OLI)) was
calibrated using the data-specific utilities of ENVI (Ver. 5.3) software program, in which the
sensor digital numbers were converted into spectral radiance in order to measure the amount
of electromagnetic radiation reflected from a spot on the surface. The spectral radiance (Lλ)
was determined using the calibration coefficients from the image metadata. Subsequently,
reflectance images were generated from the obtained radiance. Various atmospheric correction
techniques (dark object removal, haze removal, cloud masking, etc.) were applied to correct the
sensor radiance for atmospheric effects by mathematically modeling the physical inclinations
of the radiation as it passes through the atmosphere. Image enhancement and histogram
stretch (linear) were also carried out. Sentinel-2, in turn, is based on a satellite constellation
deployed in polar sun-synchronous orbit. While ensuring data continuity of previous Spot and
Landsat multi-spectralmissions, Sentinel-2 can even offer broad improvements, such as a
unique blend of global coverage with a wide field of view (290 km), a very high revisit (5 days
with two satellites), a high resolution (10 m, 20 m and 60 m) and multi-spectral imagery (13
spectral bands in visible and shortwave infra-red domains). Image provided for this study was
level- 1C, which was an ortho-rectified top of atmosphere reflectancewith a sub-pixel multi-
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spectral and multi-date registration; a cloud and land/water mask was associated to the prod-
uct. The Level-1C processing is enhanced by algorithms of resampling and cloud and land/
water masks computations, which make it a stage that lead to the computation of level-1B (Top
of Atmosphere (TOA) reflectance) product. The spectral bands span from the visible and the
near infrared to the short wave infrared. Four bands at 10 m ground resolution include the clas-
sical blue (490 nm), green (560 nm), red (665 nm) and near infrared (842 nm) bands special-
ized in land applications.

Vegetation indices (VIs), such as NDVI and SAVI, were extracted from the pre-processed
images and used for yield prediction. In addition, the cumulative value of the generated indices
(CNDVI and CSAVI) was also examined for the development of potato yield prediction algo-
rithms. The NDVI and SAVI were calculated using red (ρRED) and near-infrared (ρNIR) spec-
tral bands of Landsat-8 and Sentinel-2 as in Eqs 1 and 2 [32] and [33].

NDVI ¼
ðρNIR � rREDÞ

ðρNIR þ rREDÞ
ð1Þ

SAVI ¼
ðρNIR � rREDÞ

ðρNIR þ rRED þ LÞ
ð1þ LÞ ð2Þ

Fig 1. Locationof the study fields.

doi:10.1371/journal.pone.0162219.g001

Table 1. Used satellite images.

Sl. No Sensor Dates of Pass Path/Row/Tile No. Spatial resolution

1 Landsat-8 (OLI) 12 January, 26 January, 11 February, 27 February and 10 March 2016 166 / 46 30 (m)

2 Sentinel-2 11 February 2016 T38QMH (Orbit No. 49) 10 (m)

doi:10.1371/journal.pone.0162219.t001
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Where, L is the canopy background adjustment factor. An L value of 0.5 in reflectance space
was found to minimize soil brightness variations and eliminate the need for additional calibra-
tion for different soils [28].

As depicted in Fig 2, the obtained satellite images were analyzed for vegetation indices and
used for the determination of sample locations for in-situ potato yield collection. The field col-
lected potato yield data points were correlated to the corresponding VIs in order to generate
algorithms for the early prediction of potato yield for the given fields.

Sampling strategy for in-situ potato yield collection
Three center-pivot irrigated fields (67-S, 68-S and 44-S) were considered as sample fields for
this study. In each of the three study fields, stratified random sampling-based sixty locations
(60 points: 45 for model generation and 15 for validation) were determined for in-situ potato
(tuber) yield data collection. These locations were distributed across each of the experimental
fields using the randomizer function of ENVI (Ver. 5.3) software program according to a pre-
scriptionmap generated based on vegetation cover variability and were located in the field with
the help of a GPS receiver (Trimble GeoXH). The cumulative NDVI (CNDVI) layer, which is a
compilation of the four extractedNDVI images during the growth stages, was used as a source
for the stratification base. The stratified random sampling provided by ENVI software, which
also called proportional or quota random sampling, involves splitting up the population (the
complete classification image) into homogeneous subgroups (the individual classes). After
that, a basic random sample in every subgroup was selected. The proportionate sampling type,
which was used in this study, tends to create sample sizes that are proportional to the size of
the classes (the greater the class, the more samples are to be drawn from it).

Intensive fieldwork from April 10th to April 16th, 2016 was carried out 2 to 3 days prior to
the harvest time of each field to assure the steadiness of crop status. In-situ collection of potato
yield (actual yield) was achieved by harvesting potato over a 3 m2 area at each sampling point.
The harvested potatoes were weighed and up-scaled to the common yield unit (t ha-1). The
composite samples selected from the aggregates were analyzed for the determination of dry
matter (DM) using the hydrometry test. Out of the collected 60 samples, 75% were used for
model generation and the rest (25%) were considered for model validation.

Prediction of potato yield
In order to reveal the relationship between actual yield and VIs and to generate an empirical
equation for the prediction of potato yield, a scatter plot was applied between the actual yield
and the RS based generated VIs (NDVI, SAVI, CNDVI and CSAVI) across the growth period.
The yield samples (45 yield points) availed for model constructionwere analyzed for Pearson
correlation (linear) coefficient against the single-date VI (NDVI and SAVI) and the multi-date
cumulative VIs (CNDVI and CSAVI). Moreover, growth stage-wise correlation coefficients
were analyzed for the best fit empirical equations; hence, the most suitable VI for the prediction
was identified accordingly. The optimum growth stage, at which the VIs were highly correlated
to the yield, was assessed for the determination of the appropriate time of potato yield predic-
tion prior to the harvest period.

Model validation and accuracy assessment
The empirical models used for the prediction of potato yield were validated against the in-situ
potato yields (actual yields). For this purpose, a scatter plot was applied between the 25% of the
actual yield (apart from the samples used for model generation) and the predicted yields, and
then analyzed for Pearson correlation coefficient (R2). Performance indicators, such as the root
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mean square error (RMSE) and the mean bias error (MBE) were determined in addition to the
Nash-Sutcliffe Efficiency (NSE), which is a normalized statistic that establishes the relative
value of the residual variance in comparison to the measured data variance [34].

Zonation of predicted yield maps
In the view of implementing precision agriculture practices and to provide an insight of the
field productivity variation for better future management, the predicted yield maps were

Fig 2. Yield predictionmap generation and analysis.

doi:10.1371/journal.pone.0162219.g002
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classified into five distinct zones based on their productivity. These zones included very high
(above 40 t ha-1), high (35–40 t ha-1), medium (30–35 t ha-1), low (20–30 t ha-1) and very low
(below 20 t ha-1) productivity zone. The pixel value, at each location in the image, represented
the average yield (t ha-1) within the pixel dimensions. Pixels with equal or close yield values
were compiled to assess the zonal yield.

Results and Discussion

In-situ potato yield
The potato yield samples collected at the three fields from the pre-allocated points were statisti-
cally analyzed to assess the spatial variability of the yield and the productivity of different zones
within one field. Table 2 presents some statistics of the collected potato samples.

Potato yield predictionmodels
Linear regression analysis showed that the relationships between the actual crop yield and VIs
were varying throughout the growth period (Table 3). Results revealed that the early and late
stages of crop life showed the least correlations. This can be attributed to that at the early crop
stages, reflection from vegetation cover is highly noised by the soil surface. On the other hand,
at late stages (i.e. when the tubers are completely riep), potato leaves tend to turn into yellow
(i.e. reduced chlorophyll) [35]. However, the best-fit models were obtained with NDVI, SAVI,
CSAVI and CNDVI. The highest correlation (R2) value was observed to be found 60 to 70 days
after planting dates of the potato crop (Table 3). For Landat-8 data, the best-fit models were
obtained with CSAVI, NDVI and SAVI for fields 67-S, 68-S and 44-S, respectively. However,
for sentinel-2, SAVI provided the best-fit for all of the studied three fields.

Table 4 presents the obtained prediction equations that have been used to generate potato
yield maps. Prediction algorithms from Landsat-8 showed a preference of using different VIs
for yield prediction (CNDVI, NDVI and SAVI for fields 67-S, 68-S and 44-S, respectively).
This can be attributed to the effect of the relatively coarse (30 m) spatial resolution which hin-
ders the optimum representation of the vegetation cover reflection. In addition, the variation
in crop age over the three fields (difference in cultivation dates) could be a cause of different
indices selection.However, the yield was found to be correlating well with the SAVI (as in Sen-
tinel-2) because SAVI minimized the soil background reflection effects caused by natural vari-
ability in surface reflection [29].

What can be revealed from the equations is that each prediction equation must be handled
as sensor and location specific.Hence, for each field there are two prediction equations from
two different satellite images. In general, the mid-growth stage (60–70 days after planting) was
found to be the best time for yield prediction for potato crop.

Table 2. Descriptivestatisticsof the actual potato yield.

Field Number 67-S 68-S 44-S

Number of Samples 45 45 45

Actual Yield (t ha-1) Minimum 4.7 18.9 27.6

Maximum 48.5 45.3 62.7

Mean 34.1 36.7 42.5

Std. Deviation 12.3 5.6 7.0

Std. Error 1.8 0.8 1.1

doi:10.1371/journal.pone.0162219.t002
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Accuracy of models used in potato yield prediction
Accuracy of the obtained empirical (yield prediction) models was assessed against the actual
yield. The highest correlation was observed for the field number 67-S, where both cumulative
SAVI (Landsat-8) and single-date SAVI (Sentinel-2) resulted in a similar R2 value of 0.65. Vali-
dation results for field 68-S showed R2 values of 0.49 and 0.45, when potato yield was correlated
with NDVI (Landsat-8) and SAVI (Sentinel-2), respectively. Furthermore, for field 44-S, the R2

values of 0.39 and 0.47 were obtained by incorporating SAVI from Landsat-8 and Sentinel-2,
respectively (Fig 3).

Results of the performance indicators used in the validation of predictionmodel are pro-
vided in Table 5. The correlation between the yield predicted by the developedmodels and the
actual yield revealed consistent similarity in terms of yield spatial and quantitative distribution
with high significances.

The obtained validation accuracies were in agreement with previous findings, where the
prediction was conducted on different crops using different space borne sensors [33] and [36].
As stated by [28], yield prediction accuracy increasedwith the increase of the density of obser-
vation points at the field. Given that statement, it was noticed from the accuracy investigation
that high values of R2 could be obtained at a field when zonal-management strategy was
applied in terms of sufficient observation points within each field zone. Temporal variability
also affects the validation accuracy, where the results of applying the obtainedmodel for the
subsequent growth periodswould determine the applicability of the tested model for a continu-
ous prediction of potato yield.

Table 6 represents a comparison between the actual yields and the predicted potato yields of
the entire fields (67-S, 68-S and 44-S) after applying the prediction equations to the whole

Table 3. Potato growth stage-wise VIs and their relationship with the actual potato yield.

Pivot No. 67-S 68-S 44-S

Sowing Date 12 December 2015 15 December 2015 18 December 2015

Sensor Landsat-8
(OLI)

Sentinel-2 Landsat-8
(OLI)

Sentinel-2 Landsat-8
(OLI)

Sentinel-2

Image Date Vegetation
Index

Crop Age
(days)

Equation
(R2)

Equation
(R2)

Crop Age
(days)

Equation
(R2)

Equation
(R2)

Crop Age
(days)

Equation
(R2)

Equation
(R2)

26 January
2016

NDVI 45 0.48 42 0.12 39 0.18

SAVI 0.47 0.14 0.14

11 February
2016

NDVI 61 0.50 0.49 58 0.13 0.23 55 0.30 0.42

SAVI 0.50 0.50 0.14 0.22 0.28 0.42

27 February
2016

NDVI 77 0.48 74 0.06 71 0.22

SAVI 0.49 0.06 0.21

14 March
2016

NDVI 92 0.34 89 0.01 86 0.37

SAVI 0.29 0.02 0.31

CNDVI 0.50 0.11 0.40

CSAVI 0.50 0.12 0.39

doi:10.1371/journal.pone.0162219.t003

Table 4. The best fit equations used for the predictionof potato yield in the three fields.

Pivot No. Sentinel-2 Pearson R2 Landsat-8 Pearson R2

67 –S Yield(t ha−1) = 60.012 × SAVI + 6.5005 0.65 Yield(t/ha) = 30.592 × CSAVI + 12.575 0.65

68 –S Yield(t ha−1) = 41.347 × SAVI + 16.621 0.45 Yield(t/ha) = 30.071 × NDVI + 13.175 0.49

44—S Yield(t ha−1) = 110.84 × SAVI + 15.845 0.47 Yield(t/ha) = 119.79 × SAVI + 11.779 0.39

doi:10.1371/journal.pone.0162219.t004
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Fig 3. Correlation betweenactual and predictedyield for pivot 67-Swith (a) CSAVI from Landsat-8and (b) SAVI from
Sentinel-2, pivot 68-Swith (c) NDVI from Landsat-8and (d) SAVI from Sentinel-2and pivot 44-Swith (e) SAVI from Landsat-8
and (f) SAVI from Sentinel-2.

doi:10.1371/journal.pone.0162219.g003
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field’s pixels (not only the 45 locations). Thus, the prediction errors were described as results of
comparing the total actual collected yields versus the total predicted ones. Total field’s yield
data were acquired after performing the full harvest of the three fields. From Table 6, it can be
seen that the analyzed image from Sentinel-2 produced a better prediction accuracy for fields
67-S and 68-S (prediction errors of 3.8% and 7.5%, respectively) compared to that produced by
Landsat-8 images (prediction errors of 7.9% and 13.5%, respectively). This was attributed to
the high spatial resolution of Sentinel-2 images, which enabled the reduction of the generaliza-
tion in crop spectral reflection and delineation of sharp field boundaries, so that noise from the
neighboring soils was removed. However, the prediction errors from Landsat-8 (9.1%) and
Sentinel-2 (10.2%) in field 44-S were verymuch indifferent.

Zonal analysis of the classified yield maps
The predicted yield maps of the three study fields (Fig 4) were developed from the Landsat-8
and Sentinel-2 satellite images employing the different indices shown in Table 4 and Fig 3.
These maps showed a considerable variation in yields within each field as represented by the
five classes. For all the study fields, it can be observed that the very-low-yield class was mainly
distributed across the field boundaries. This was attributed to the fact that pixels of this yield
class were located at the cross-boundary between the vegetation and the bare soil areas (field’s

Table 5. Model validation and performance indicators.

Field No. Sentinel-2 Landsat-8

Pearson R2 Std. Dev. RMSE (%) Sig. (1-tailed) MBE (%) NSE Pearson R2 Std. Dev. RMSE (%) Sig. (1-tailed) MBE(%) NSE

67—S 0.65 0.15 8.80 0.000 -2.00 0.58 0.65 0.286 8.74 0.000 1.30 0.62

68—S 0.45 0.063 4.96 0.001 -6.00 0.25 0.49 0.05 5.25 0.008 -5.40 0.31

44—S 0.47 0.041 5.36 0.000 -0. 11 0.38 0.39 0.03 5.97 0.000 1.60 0.46

Pearson R2: Coefficient of determination

Std. Dev.: The standard deviation

RMSE (%): The root-mean-square error

Sig. (1-tailed): A Statistical significance

MBE (%): Themean bias error

NSE: The Nash-Sutcliffe Efficiency

doi:10.1371/journal.pone.0162219.t005

Table 6. Total predictedvs. actual yields.

Landsat—8

Field: 67-S Field: 68-S Field: 44-S

Freshweight (Ton) Dry Matter (%) FreshWeight (Ton) DryMatter (%) FreshWeight (Ton) Dry Matter (%)

Predicted yield* 1040 20.8 1060 25.0 1123 20.4

Actual yield * 957.26 20.8–21.0 1225.48 25.0 1235.69 20.4

PredictionError * (%) 7.9 13.5 9.1
Sentinel- 2

Field: 67-S Field: 68-S Field: 44-S

FreshWeight (Ton) Dry Matter (%) FreshWeight (Ton) DryMatter (%) FreshWeight (Ton) Dry Matter (%)

Predicted yield* 995.00 20.8 1133.67 25.0 1110 20.4

Actual yield * 957.26 20.8–21.0 1225.48 25.0 1235.69 20.4

PredictionError * (%) 3.8 7.5 10.2

* Predicted yield, actual yield and prediction error were determined based on fresh potato weight.

doi:10.1371/journal.pone.0162219.t006
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end); where scarceness of the yield existed. On the other hand, the low VIs estimated values
could probably be attributed to the reflections from the holistic surface covers (vegetation
+ bare soil), especially from the coarse resolution images of Landsat-8 compared to Sentinel-2.
The yield classes of Landsat-8 and Sentinel-2 maps were described based on pixel count that
associated with class creation. By comparing the yield potentials within the very-high-yield and

Fig 4. Maps of predictedpotato yield for (a) pivot 67-S usingCSAVI from Landsat-8, (b) pivot 67-S usingSAVI from
Sentinel-2, (c) pivot 68-S usingNDVI from Landsat-8, (d) pivot 68-S usingSAVI from Sentinel-2, (e) pivot 44-S using
SAVI from Landsat-8 and (f) pivot 44-S usingSAVI from Sentinel-2.

doi:10.1371/journal.pone.0162219.g004
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the very-low-yield classes, a variation of yield ranging from 20 to 40 t ha-1 was found to exist
within each field. The least yield values (0 to 20 t ha-1) were observed along the fields boundary,
where the cumulative reflectance of soil and vegetation was detected at the field’s end.

The class-wise histograms of potato yield distributed across the studied fields were devel-
oped (Fig 5). From Fig 5, it can be seen that the most frequent productivity was achieved within
the high-yield classes of fields 67-S and 68-S, with total absence of the very-high-yield class in
field 68-S, which were observed to have average values of 37 t ha-1 for both fields and a yield
range of 37 to 38 t ha-1 for field 44-S. On the other hand, the most productive areas (very-high-
yield classes) were observed to be less frequent compared to the high-yield classes. These results
highlighted the importance of improving the productivity over the three least yield classes
(medium, low and very low) to increase the total field productivity through the use of potato
yield monitoring techniques and a suitable management. On the other hand, it is believed that
expanding the analysis to cover the environmental and soil influential factors can assist in the
enhancement of the yield productivity. The normal distribution shown by graphs (e) and (f)

Fig 5. Histogram of potato yield for (a) pivot 67-S from Landsat-8, (b) pivot 67-S from Sentinel-2, (c) pivot 68-S from Landsat-
8, (d) pivot 68-S from Sentinel-2, (e) pivot 44-S from Landsat-8 and (f) pivot 44-S from Sentinel-2.

doi:10.1371/journal.pone.0162219.g005
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revealed that the field 44-S produced a broad variety of yields within the five yield classes. Pro-
duction with such variability could complicate the planning for the zone management in terms
of following a specific type agricultural activity or applying fixed additive doses.

In order to demonstrate the importance of reclaiming the zones with the low-yields, a quan-
titative assessment of the predicted potato yield derived using both satellites (Landsat-8 and
Sentinel-2) over the three fields was conducted. Fig 6 shows the relative variation in area versus
yield classes for Landsat-8 and Sentinel-2maps. The resulting analysis highlighted the potential
of using precision agriculture in the enhancement of the productivity throughmanaging the
low yield locations for more profitability (vertical expansion in crop yield). From Landsat-8
yield maps, it was calculated that the area of very-high-yield class (yield� 40 t ha-1) occupied
25% of the total area of field 67-S (Fig 6a); however, the same class occupied 68% of the total
area of field 44-S. On the other hand, no such class (very-high-yield zone) was predicted for
field 68-S, which indicated a lower field productivity that was limited to less than 40 t ha-1. Sen-
tinel-2 maps, however, revealed that the very-high-yield classes (yield� 40 t ha-1) occupied
30%, 4% and 62% of the total area for fields 67-S, 68-S and 44-S, respectively (Fig 6b). Predic-
tion by Sentinel-2 of the very-high-yield class in field 68-S contradicted with the results from
Landsat-8 for the same field. However, the actual yield observations for field 68-S agreed with
the Sentinel-2 predictions. The contradiction could be attributed to the coarse spatial resolu-
tion of Landsat-8, in which the surface reflectionwas associated with multiple factors, such as
soil, weeds, etc.

Conclusions
A field study was conducted to provide an efficient and practical means of predicting potato
tuber yield cultivated under a center pivot irrigation system using remote sensing techniques.
The following conclusions are inferred from the study:

• The study provided an effectivemethod to predict potato yield and map its spatial variability.
Images from Landsat-8 (30 m resolution) and Sentinel-2 (10 m resolution) satellite vehicles
were downloaded for the study area free of charge. The use of vegetation indices (VIs)
extracted from the satellite images was found to provide an effective and an efficientmeans
of potato yield prediction.

Fig 6. The variation in productivityclasses of (a) Landsat-8 and (b) Sentinel-2 yieldmaps.

doi:10.1371/journal.pone.0162219.g006
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• Prediction of crops yield through analyzing their bioactivities using satellite images could
avail considerable information to improve productivity, such as recognizing the variation in
field productivity across the field. It has been noticed in this study that high-yield areas pro-
duced average yields of above 40 t ha-1; however, the low-yield areas produced, on the aver-
age, yields of less than 21 t ha-1. Displaying and highlighting such great variations in field
productivity can help farmers and decisionmakers be aware of the problem; hence, adjust
their management practices.
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