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Abstract
Seasonal and inter-annual climate variability have become important issues for farmers,

and climate change has been shown to increase them. Simultaneously farmers and agricul-

tural organizations are increasingly collecting observational data about in situ crop perfor-

mance. Agriculture thus needs new tools to cope with changing environmental conditions

and to take advantage of these data. Data mining techniques make it possible to extract

embedded knowledge associated with farmer experiences from these large observational

datasets in order to identify best practices for adapting to climate variability. We introduce

new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting

observational datasets of commercial harvest records were combined with in situ daily

weather series. Using Conditional Inference Forest and clustering techniques, we assessed

the relationships between climatic factors and crop yield variability at the local scale for spe-

cific cultivars and growth stages. The analysis showed clear relationships in the various

location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal

variability in yield, and with crop responses to weather being non-linear and cultivar-specific.

Climatic factors affected cultivars differently during each stage of development. For

instance, one cultivar was affected by high nighttime temperatures in the reproductive stage

but responded positively to accumulated solar radiation during the ripening stage. Another

was affected by high nighttime temperatures during both the vegetative and reproductive

stages. Clustering of the weather patterns corresponding to individual cropping events

revealed different groups of weather patterns for irrigated and rainfed systems with contrast-

ing yield levels. Best-suited cultivars were identified for some weather patterns, making

weather-site-specific recommendations possible. This study illustrates the potential of data

mining for adding value to existing observational data in agriculture by allowing embedded

knowledge to be quickly leveraged. It generates site-specific information on cultivar

response to climatic factors and supports on-farm management decisions for adaptation to

climate variability.
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1. Introduction
Decision making by farmers on what crop to grow, where, and when, necessarily takes into
account numerous factors, many of which are highly variable [1]. Among them, climatic condi-
tions directly affect the performance of crops [2] and are therefore of principal importance.
Recent research demonstrates the role of climate change in causing shifts in seasonal/inter-
annual climate variability (hereafter referred to as climate variability [3]), with weather patterns
becoming less consistent with farmers’ experience and crops experiencing more extreme cli-
matic events [4,5]. In the tropics, sea surface temperature of the Niño 3 and Niño-3.4 regions
in the Pacific Ocean, a key driving force of climate variability [6,7], is trending toward
increased inter-annual variability with simulations of future climates forced by higher green-
house gas concentrations suggesting that this trend will continue [8]. There is thus little doubt
that climate variability will continue to present challenges for agriculture in the region.

This context is reflected in increased variability in crop yields [9,10] and greater uncertainty
for farming related businesses [11]. In Colombia, for example, the national average yield for
irrigated rice has dropped from approximately 6,000 kg�ha-1 to 5,000 kg�ha-1 over the last five
years [12,13], with local agronomists hypothesizing climate variability as the main cause. Rice
is a staple crop in the country with per capita intake estimated at 37.7 kg�person-1�year-1 [14].
The socio-economic impacts of yield variability are further exacerbated when the impact on
competitiveness is considered, especially since the US-Colombia free trade agreement went
into effect in May 2012.

To counter the impacts of climate variability, understanding how different climatic factors
affect rice yields is a key objective of the Colombian National Rice growers Federation (Fedear-
roz). Weather-yield relationships are dynamic and depend on a complex set of interactions
between local biophysical conditions and crop management practices. Whilst previous global
and continental scale studies have successfully characterized the impact of climate variability
on yields [15–18], they have limited direct relevance to farm-level decisions as they do not pro-
vide information about specific weather-cultivar-yield relationships occurring at local scale.
Indeed, of the numerous potential limiting factors that have been characterized in the literature
for rice, farmers still need to know which factors actually limit productivity on their specific
farm and in what order of relevance. Traditional experimental schemes for local multisite char-
acterizations of these issues are expensive and take time. To support tactical farm-level deci-
sions, more dynamic and specific studies are needed [19]. These studies should leverage site-
specific knowledge through in situ daily weather and production records, and assess the influ-
ence on yields of more climatic variables than simply temperatures and precipitation.

Comprehensive assessments of the influence of climate variability on crop yields at local
and regional scales can benefit from the use of disaggregated observational data. Characterizing
yield, weather, soil and management factors, these data have the potential to improve the spa-
tial and temporal resolution of the results of empirical modelling approaches. Examples where
non-experimental data have already been shown to embody useful information include predic-
tion of influenza spreading [20], real-time rainfall estimation [21], and medical cohort studies
[22]. For agriculture, much of the data needed for such assessments are often already available
as many agricultural organizations have been collecting information for decades for internal
purposes without realizing that such data may hold significant latent value in unanticipated
uses. Simultaneously, more and more data are being generated thanks to increasingly inexpen-
sive sensor networks, remote sensing and the spread of information and communication tech-
nologies [23,24]. Nevertheless such data often remain underexploited as many organizations
lack the tools to harness the information with reliability, rapidity and accuracy so as to generate
timely recommendations.
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Here, we leverage and further develop the concept of data-driven agronomy, an approach
that, in contrast to traditional controlled experiments, combines observational data, agronomy,
analytics, and the principles of operational research [25,26]. The approach relies on data col-
lected on commercial cropping events that simultaneously capture a wide range of combina-
tions of weather, soil and management conditions along with corresponding yields; these
diverse datasets therefore capture the inherent variability in operating conditions of commer-
cial farms [27].

While large farm-level observational datasets often do not meet the standards of traditional
statistical methods, they open up the possibility of using data mining approaches to discover
and analyze trends that may occur in agricultural systems. Machine learning techniques thus
represent an alternative approach to allow the discovery of embedded knowledge that may be
present in the data. Successful examples of these types of approaches to support agronomic
decision-making include the use of both supervised and unsupervised artificial neural networks
to model Andean Blackberry (Rubus glaucus) yields [26], and the use of mixed models to deter-
mine optimum growing conditions of Lulo (Solanum quitoense) [28]. Classification And
Regression Trees (CART) offer a more interpretable scheme that has been used to analyze
maize [29] and rice [27]. More recently, CART and CHi-squared Automatic Interaction Detec-
tion (CHAID) models were combined to analyze maize data [30]. Nevertheless, only a handful
of studies have used observational datasets based on truly non-experimental crop data to train
empirical models, including agricultural systems for a variety of food crops in tropical regions
[25,26,28], along with cotton in more temperate regions [31].

In this research we introduce an approach based on observational data and data mining tech-
niques to support decision making in rice agriculture. Our first objective was to analyze the role
of climate variability as a limiting factor for large series of rice cropping events in two contrast-
ing regions of Colombia. Our second objective was to assess the diversity of weather patterns
under which rice was produced, in order to quantify their impact on yields and to identify best
suited cultivars for each condition. The complete process of data preparation, the framework for
selection of methods, the two-phase analysis, and its substantiation are presented below.

2. Materials and Methods

2.1. Study areas
In 2014, Colombia produced approximately 1.69 million tons of paddy rice, of which 1.1 mil-
lion tons (65%) were produced by lowland irrigated rice crops on 217,000 ha (58%), and
587,000 tons (35%) by rainfed rice on 156,000 ha (42%) [13]. This study focuses on two impor-
tant, yet contrasting regions and cropping systems that account for more than 70% of the rice
production in the country: the central department of Tolima (lowland irrigated rice) and a
large area known as the “Llanos” or plains in the Meta department (rainfed rice) (Fig 1).

Tolima is the leading rice producing area in Colombia. The region is topographically varied
and is located in the Magdalena river valley formed by the Andean mountain chain. Lowland
irrigated rice is grown twice a year in the low flatlands at approximately 300 meters altitude.
Average precipitation in Tolima is approximately 1,400 mm per year with a bimodal distribu-
tion: the first rainy season starts around the end of March/beginning of April, and the second
one around the beginning of September. Average temperature remains relatively constant
throughout the year at around 27°C. Soils are predominantly Inceptisols with fine texture,
slightly acidic to neutral pH, and contain moderate amounts of organic matter [32]. Within
Tolima, we focused on the localities of Saldaña and Purificación, located in the southeast of the
department (Fig 1), where an average of 12,000 ha of rice are grown in each semester. Farms
are relatively small, with an average area of 6 ha, and are typically family run enterprises with
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medium levels of technology adoption. Unless otherwise noted, hereafter we use the name Sal-
daña to refer to both municipalities.

The second area is commonly called “Los Llanos Orientales” and refers to the immense
plains just east of the Andes. Soils of this region are mainly oxisols and to a lesser extent, ultisols.
They tend to be more acidic, and with high levels of aluminum and compaction [33]. Although
there is abundant rainfall with 2,000 to 3,500 mm per year following a monomodal distribution,
little of this water benefits the rice crops due to uneven rainfall and the lack of irrigation infra-
structure. The rainy season starts around the end of March/beginning of April. Average temper-
ature remains almost constant throughout the year at around 26°C. These large plains have
been traditionally used in extensive livestock production and oil palm tree plantations, with rice
concentrated in areas closer to the piedmont. In the “Llanos”, rainfed rice is typically sown once
a year, just before the start of the rainy season. Farmers tend to be entrepreneurial and typically
rent the land each season depending on how they perceive the relative profitability of the crop
for that year. We analyzed data from two municipalities in the department of Meta: Villavicen-
cio and Restrepo (Fig 1), where 6,300 ha of rainfed rice are sown in the first semester. We use
the name Villavicencio to refer to both of these localities hereafter.

Fig 1. Locationmap of the study areas.

doi:10.1371/journal.pone.0161620.g001
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2.2. Data sources and preprocessing
Non-experimental or observational data can come from many sources. Working with multiple
sources of data can be challenging as the data are often highly disparate. Here, we construct a
database of non-experimental observations from different sources, carefully addressing the
challenges and opportunities associated with converting this kind of data into usable
information.

2.2.1. Commercial crop data. Fedearroz has been collecting information on commercial
rice crops in the rice-producing areas of Colombia for a range of purposes, including yield
monitoring and crop profitability studies. As a result, the Federation holds multiple datasets of
varying quality, different sample sizes and at multiple levels of detail in terms of recorded vari-
ables. Not all the information is centralized yet, nor it all exist in digital form. For this study,
we had access to a portion of this information, and used three different datasets. (a) The harvest
monitoring dataset was the largest. Records in this dataset are based on large scale routine sur-
veys in the regions designed to monitor production levels. This dataset includes cropping sys-
tem, harvest date, location, cultivar and yield. (b) The national rice survey is a detailed
biannual monitoring of a representative sample of rice farms in Colombia. This survey has
been running since 1988 and includes many variables associated with management practices,
costs, and production. An average of 130 rice fields are surveyed semiannually throughout the
rice producing regions, with five visits to each. (c) Finally, sowing dates experiments are rou-
tinely run by Fedearroz each year to assess the influence of the sowing period on yields. Differ-
ent sowing dates are tested under standard management to assess crop response. Although
these are experimental data, we included them in the study because they bring additional tem-
poral variability as a function of the unusual sowing dates. Table 1 summarizes the availability
of data from each source in each of the localities as well as the time periods covered by the data.

The data were standardized for consistent spelling and measurement units. In cases where
data were sparse, incoherent or duplicated, the corresponding records were removed. The data
were then merged into a new data frame that included only the variables in common among all
of the three datasets, namely: municipality, cultivar, cropping system, sowing date, harvest
date, and yield. When the sowing date was not available (80% of the data), we estimated it by
subtracting 126 days from the harvest date in Saldaña, and 128 days in Villavicencio. Those
durations were set according to the average crop cycle length of the remaining records with
both sowing and harvest dates measured, and coincide with the typical duration of the rice
crop cycle in the tropics [34,35] and in Colombia [36]. Exact harvest dates were available for all
records, which guaranteed that the cropping events could be accurately located in time.

2.2.2. Daily weather data at the station level. We obtained daily weather records from
the National Institute of Hydrology, Meteorology, and Environmental Studies (known as
IDEAM), and from one weather station of the Fedearroz agro-meteorological network. The
five most important climatic variables for rice growth [35] were considered: minimum temper-
ature (TM), maximum temperature (TX), precipitation (P), relative humidity (RH) and solar
radiation (SR).

Table 1. Summary of data sources for cropping events.

Number of observations available

Dataset Years with available data for the study In Saldaña (irrigated rice) In Villavicencio (rainfed rice)

(a) Harvest monitoring 2007 to 2014 945 268

(b) National Rice Survey 2007 to 2012 95 28

(c) Sowing date experiments 2012 to 2013 200 79

Total 1,240 375

doi:10.1371/journal.pone.0161620.t001

AssessingWeather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches

PLOS ONE | DOI:10.1371/journal.pone.0161620 August 25, 2016 5 / 25



Stations were initially selected according to the availability of desired variables, quality of
data, length of the available time series, and proportion of missing values. In each of the study
areas, the set of selected stations was further screened based on: nearness to rice crops (<10
km), similar altitude level (±50m relative to the crops), and consistency in series between one
another. The closest station to the rice fields was then selected, while the others served as sup-
porting information for estimation of missing values.

Hourly records were converted to daily when more than 80% of the data was available; oth-
erwise the day was considered a missing value. Each of the weather series was quality controlled
following the World Meteorological Organization guidelines [37]. In Villavicencio none of the
stations measured SR, but all of them had sunshine duration which corresponds to sunny
hours per day. We calculated SR from sunshine duration using Angstrom’s equation suggested
by FAO in [38]. This was done using the R package SIRAD [39]. In Saldaña, in order to reduce
the proportion of missing values to be estimated, stations ID#15 from Fedearroz and
ID#21135020 from IDEAM were merged as they had complementary recording periods and
were very close to one another (approximately 7km distant).

Remaining missing values for TM, TX and P were then estimated by a weather generator
based on Vector Autoregressive models (VARs) for multivariate time series using the R pack-
age RMAWGEN [40]. For RH and SR, a different method was used: a random forest model
was trained using the R package randomForest [41] on a sample dataset using TM, TX and P
as predictors to estimate missing values. The parameters for randomForest were: 800 trees
(ntree = 800) with two predictors used at each node (mtry = 2). Once all the data were cleaned
and missing values filled, we obtained one representative weather series for each locality.
Finally we computed daily values of the average temperature (TA hereafter) ((TX-TM)/2) and
the diurnal range (DR hereafter) (TX-TM).

The above procedures were implemented in Saldaña using data from a combination of two
stations from IDEAM and one from Fedearroz (S1 Table). In Villavicencio, four stations from
IDEAM were used (S2 Table). These weather data, in combination with the collected crop data
thus served as the primary inputs for the analytic process.

2.2.3. Data preparation. Our analysis unit was the cropping event as defined by Cock
et al. [25]. A cropping event is the combination of, (i) a yield record at a given time in a specific
field and, (ii) the records of everything that happened to that specific crop from sowing to har-
vest. The definition includes the characterization of environmental conditions, namely climate
and soil, and of the management practices implemented by the farmer. Cropping events are
unique in time and space, but similar events can occur in different places or in the same place
at different times.

In this study we focus on climatic factors. We related each individual harvest record to the
daily weather data corresponding to the period between sowing and harvesting dates, which
corresponds to the weather pattern the crop effectively experienced. The seven previously
described climatic variables, TX, TM, P, RH, SR, TA, and DR were used as the basis to charac-
terize the cropping events.

Short cycle crops like rice have specific requirements and sensitivity to environmental fac-
tors in each growth stage that are directly related to the physiological processes occurring in
the plant [35,42]. To understand plant response to climatic factors, we calculated specific indi-
cators out of the raw weather data separately for each of the three growth stages as defined by
Yoshida [35]: vegetative (VEG) from germination to initiation of panicle primordia, reproduc-
tive (REP) from panicle primordia initiation to heading, and ripening (RIP) from heading to
maturity. For each cropping event the panicle initiation and flowering dates were estimated
based on the local knowledge of agronomists and physiologists from Fedearroz, taking into
account the differences between cultivars. They defined the typical durations of each growth
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stage for each cultivar on the basis of a 126 days cropping period. The estimated dates were
then calculated for each cropping event according to the cultivar grown and adjusting those
durations proportionally to the actual total growth period, to take into account shorter/longer
cropping events. These dates served to split the crop growth period and the corresponding
weather records into the three growth stages. Resulting variables are listed in Table 2 where
each indicator appears three times, one for each growth stage. Temperature thresholds were
adapted from Sánchez et al. [42].

After the indicators were calculated, variables with low or zero variability and outliers were
removed. The final datasets included 1,240 cropping events in Saldaña from 2007 to 2013, and
373 cropping events in Villavicencio from 2007 to 2014.

In order to minimize bias in the analyses, for each of the two regions, all cropping events
were pooled together indifferently, independent of the year or semester.

2.2.4. Observed variability for climatic variables and rice yields. Rice has been shown to
be highly sensitive to climatic conditions. Yoshida [35] showed that in controlled conditions, a
100 cal�cm-2�day-1 difference in the ripening stage can result in approximately 1,000 kg�ha-1
impact on yield. Using observational data we had access to the wide range of climatic

Table 2. List of the variables used in the models.

Variable name Meaning Type Unit

Cultivar Cultivar that was grown Categorical

TX_Avg_VEG Average maximum temperature in vegetative stage Continuous °C

TX_Avg_REP Average maximum temperature in reproductive stage Continuous °C

TX_Avg_RIP Average maximum temperature in ripening stage Continuous °C

TM_Avg_VEG Average minimum temperature in vegetative stage Continuous °C

TM_Avg_REP Average minimum temperature in reproductive stage Continuous °C

TM_Avg_RIP Average minimum temperature in ripening stage Continuous °C

TA_Avg_VEG Average temperature in vegetative stage Continuous °C

TA_Avg_REP Average temperature in reproductive stage Continuous °C

TA_Avg_RIP Average temperature in ripening stage Continuous °C

DR_Avg_VEG Average diurnal range in vegetative stage Continuous °C

DR_Avg_REP Average diurnal range in reproductive stage Continuous °C

DR_Avg_RIP Average diurnal range in ripening stage Continuous °C

TX_35_Freq_VEG frequency of days with maximum temperature above 35°C in vegetative stage Continuous —

TX_37_Freq_REP frequency of days with maximum temperature above 37°C in reproductive stage Continuous —

TX_31_Freq_RIP frequency of days with maximum temperature above 31°C in ripening stage Continuous —

P_Accu_VEG Accumulated precipitation in vegetative stage Continuous mm

P_Accu_REP Accumulated precipitation in reproductive stage Continuous mm

P_Accu_RIP Accumulated precipitation in ripening stage Continuous mm

P_10_Freq_VEG Frequency of days with more than 10 mm precipitation in vegetative stage Continuous —

P_10_Freq_REP Frequency of days with more than 10 mm precipitation in reproductive stage Continuous —

P_10_Freq_RIP Frequency of days with more than 10 mm precipitation in ripening stage Continuous —

RH_Avg_VEG Average relative humidity in vegetative stage Continuous %

RH_Avg_REP Average relative humidity in reproductive stage Continuous %

RH_Avg_RIP Average relative humidity in ripening stage Continuous %

SR_Accu_VEG Accumulated solar energy in vegetative stage Continuous Cal�cm-2

SR_Accu_REP Accumulated solar energy in reproductive stage Continuous Cal�cm-2

SR_Accu_RIP Accumulated solar energy in ripening stage Continuous Cal�cm-2

Yield Crop productivity Continuous Kg�ha-1

doi:10.1371/journal.pone.0161620.t002
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conditions that the crops experienced in the last seven years. Table 3 sums up the observed
range for each climatic variable as well as for yield in both sites.

The observed variability in climatic factors is attributable to climate variability as well as to
the diversity of sowing dates used by rice growers. In several instances, climate characteristics
reached the physiological limits of the plant. For example in Saldaña, the maximum tempera-
tures crops were exposed to, ranged between 23.4 and 39.6°C. Optimum limits have been
assessed for rice with the observation that temperatures above 37°C during anthesis may result
in plant sterility [42]. SR also varied significantly: in the whole cycle, the minimum accumu-
lated SR was 40,146 cal�cm-2 (daily average 391 cal�cm-2�day-1) and the maximum accumulated
SR was 69,543 cal�cm-2 (daily average 465 cal�cm-2�day-1). In Villavicencio, total precipitation
was abundant with respect to rainfed rice requirements as characterized by Fageria [43], but its
distribution was variable: P_10_Freq ranged from 0.22 to 0.43 meaning that some cropping
events received twice as much frequent rainfall as others. The summary of observed variability
in climatic factors per growth stage is shown in S3 Table.

The dependent variable, yield, also varied significantly. Yields ranged between 2,000 and
10,750 kg�ha-1 in Saldaña, and between 1,750 and 8,200 kg�ha-1 in Villavicencio (S1 Fig). As a
reference, national average yield is 6,100 kg�ha-1 for irrigated rice and 4,600 kg�ha-1 for rainfed
rice [13].

With the exploratory analysis of the data confirming large variability in both yields and cli-
matic conditions among cropping events, the following sections focus on exploring this vari-
ability to determine the relationships between yield and climatic factors at the system and
cultivar levels.

2.3. Analysis methods
2.3.1. Machine learning to detect climatic limiting factors affecting rice yield at regional

scale. Machine learning techniques have become popular in many disciplines [44–46] to ana-
lyze non-experimental/observational data, as they often have lower requirements with respect
to input data quality. Several algorithms used in earlier studies in similar contexts
[27,44,45,47], as well as others with potentially desirable characteristics, were evaluated in rela-
tion to the main characteristics of our problem: (i) observational error and noisy data in both
predictors and response variables, (ii) high likelihood of non-linear relationships between pre-
dictors and yield, (iii) high potential for correlated predictors, and (iv) the need to retrieve the
relevant variables that actually explain the yield variability. We first compared algorithms in
order to systematically identify those most suited to our problem (Table 4, adapted from Hastie
et al. [48]). We then selected an implementation consistent with our analytical framework.

Table 3. Summary of the variability observed among all cropping events between 2007 and 2014 in each site.

Saldaña Villavicencio

Variable Minimum Maximum Coefficient of variation Minimum Maximum Coefficient of variation

TX (°C) 23.4 39.6 0.07 23 36 0.07

TM (°C) 18.6 27.3 0.04 18 26 0.05

P_accu (mm) 115 1,229 0.36 987 1,934 0.16

P_10_Freq 0.03 0.23 0.37 0.22 0.43 0.15

RH (%) 42 95.6 0.10 61.9 96 0.07

SR_accu (cal�cm-2) 40,146 69,543 0.06 39,508 52,543 0.04

Yield (kg�ha-1) 2,000 10,750 0.21 1,750 8,200 0.29

See Table 2 for variables definitions.

doi:10.1371/journal.pone.0161620.t003
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It is important to note that we do not compare the algorithms in terms of prediction power
since the main purpose of this study is to explain yield variability rather than to predict it cor-
rectly. This crucial difference was highlighted by Shmueli et al. [52].

Given the characteristics of our data, tree-based methods are generally the best suited to our
objectives. In order to reduce the variance typical of tree-based approaches, “bagging” was
introduced by Breiman et al. [53], and works especially well for high-variance, low-bias proce-
dures. The Random Forests algorithm (RF hereafter) [54], is a modification of the bagging
approach that builds a large number of trees, and computes their average. In spite of the posi-
tive features of RF, its basic implementation suffers from several drawbacks that have been
reported in former studies: it has a bias that tends to favor correlated predictors in calculating
the variable importance measure (VI hereafter) and, among them, does not distinguish well the
truly informative predictors from the spuriously correlated ones [55,56].

A new implementation of RF, Conditional Inference Forests (CIF), proposed by Strobl et al.
[55], addresses these issues. CIF uses an alternative tree building process [57] with a condi-
tional grid for the permutation importance measure, allowing better assessment of the individ-
ual contribution of each variable and better differentiation of real predictors from spurious
correlations. The computed importance is then considered conditional in that a variable has a
marginal importance if there is no other variable given and it partly explains the output, and a
conditional importance if all other variables are given and it still brings additional explanatory
value. The latter is particularly relevant for explanation tasks, and is why we used CIF.

Table 4. Comparison of regression methods relative to their ability to handle different types of data problems.

Linear Models Neural Networks Trees Support Vector Machine

Non-linear
relationships

[-] Non-linear relationships
require transformation before
training the model, which
requires prior knowledge.

[+] Neural networks have
universal approximation
capabilities for non-linear
relationships [49]

[+] Can model non-linear
relationships.

[+] Can model non-linear
relationships.

Natural handling of
“mixed” type data

[-] Needs preliminary
transformation of categorical
variables.

[-] Needs preliminary
transformation of categorical
variables.

[+] Uses recursive binary
partitions. Therefore handles
categorical variables
inherently.

[-] Needs preliminary
transformation of categorical
variables.

Handling of missing
values

[-] Needs preliminary
imputation of missing values

[-] Needs preliminary
imputation of missing values

[+] Can use surrogate splits to
overcome missing data.

[-] Needs preliminary imputation
of missing values

Robustness to
outliers and noisy
data

[-] Typically influenced by
outliers. Therefore needs
preliminary filtering of such
values.

[-] Known to suffer a lack of
robustness towards outliers
when using a classical error
measure [50]

[+] Resilient to the effects of
predictor outliers.

[-] One of the well-known risks
of large margin training
methods, such as SVMs is their
sensitivity to outliers [51]

Insensitive to
monotone
transformations of
inputs

[-] Typically influenced by any
transformation of the inputs.

[-] Typically influenced by
any transformation of the
inputs.

[+] Invariant under (strictly
monotone) transformations of
the individual predictors.

[-] Typically influenced by any
transformation of the inputs.

Ability to deal with
irrelevant inputs

[+] Assigns a low coefficient to
irrelevant inputs.

[-] Does not cope well with
irrelevant input.

[+] Performs internal feature
selection. Thereby resistant to
inclusion of many irrelevant
predictors.

[-] Does not cope well with
irrelevant input.

Interpretability [+] White-box model. [-] Black-box model. [+] Grey-box model. Tends to
be white-box if the number of
splits is small.

[-] Black-box model.

Ability to deal with
correlated predictors

[-] Needs previous filtering of
such correlated predictors.

[-] Needs previous filtering of
such correlated predictors.

[-] Needs previous filtering of
such correlated predictors.

[-] Needs previous filtering of
such correlated predictors.

([+] = good, [-] = poor).

doi:10.1371/journal.pone.0161620.t004
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Following the observations of Genuer et al. [58], and to maximize the discriminating power
of the models, 2,000 trees were grown in each CIF model (ntree = 2,000), and a random sample
of nine of the 27 input variables (see Table 2) was used at each node to choose the best split
(mtry = p/3 = 9). An ensemble of 100 CIF models were trained for each dataset so as to mitigate
the instability of the method. VI results of each model were normalized (i.e. divided by the sum
of the VI scores) and scaled by the model’s performance (R-squared) to give more weight to
well-adjusted models. Final VI scores of the input variables were computed as the average of
the VI scores obtained by the variable over the 100 runs [48,55]. R packages party (function
ctree) [57] and caret [59] were used to run the CIF models.

We performed a post-treatment of the predictors’ VI score distributions using a Kruskal-
Wallis test. The multiple comparison procedure groups predictors according to their VI distri-
bution’s position parameters, performing a significance test at 5% level (P-Value = 0.05). This
enhanced the reading of the results and their interpretation by emphasizing the significant dif-
ferences between VI scores distributions. This was done using the R package agricolae [60].

Models were first run per region to characterize the overall limiting factors at the regional
scale. Models were then run separately for every cultivar with sufficient number of observations
(n>100), in order to characterize the specific response of each cultivar to the regional climate
variability. Three different cultivars were considered in Saldaña and one was considered in
Villavicencio.

The computational load of CIF models is high and therefore limits the number of observa-
tions that can be analyzed in one model to approximately 500. To run the model including all
the cultivars in Saldaña (n = 1,240), we followed the approach used by Nicodemus et al. [61]
and suggested by Strobl et al. [55], and randomly sampled the dataset to generate 100 subsets
of 400 observations. A CIF model was trained on each of the subsets, with the same parameters
as above, to compute the conditional VI. Final VI of each input variable was then averaged
across the 100 CIF models the same way as above.

Finally, to assess the relationships between the predictors and the output, response profiles
were drawn using partial dependence plots [44,48,62]. They represent the partial relationships
of the predictors to the output variable as expressed by the model.

2.3.2. Clustering to classify cropping events according to their weather pattern. To fur-
ther characterize the relationships of climate variability and crop yields over time, we assessed
how different weather patterns influenced yields. To do this, we classified the cropping events
according to their specific climatic conditions using hierarchical clustering.

Traditional clustering techniques use numeric and/or categorical variables as features to
classify the individuals. In order to conserve the precision allowed by daily weather records and
to enhance the clustering process, we used the whole weather patterns of the cropping events
directly as features. We used the Dynamic Time Warping (DTW) distance [63–65] as a dis-
tance measure for the clustering analysis. DTW allows the direct use of the five original climatic
data series that characterize each cropping event as a basis for differentiation in the clustering
process. Each series holds approximately 126 daily data points, depending on the duration of
the rice cropping events. This framework makes it possible to differentiate groups based on
day-to-day variability, including drought and heat spells of short duration that can substan-
tially affect rice [66,67]. The optimal number of clusters was determined based on the inertia
gain in the hierarchical tree. As with VI results, we performed a Kruskal-Wallis test on clusters’
yield distributions in order to group clusters with no significant differences, and distinguish
them from the others.

The clustering analyses were designed to produce groups of cropping events that experi-
enced similar weather patterns. This would help differentiating between favorable and unfavor-
able patterns [67], and to get insights into each group to learn as to which cultivars performed
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the best under each condition. Cluster analyses were run using the R package dtw [68]. All
analyses were run using the R statistical environment (R 3.1.2) [69].

3. Results and Discussion

3.1. Exploration of limiting climatic factors affecting rice yields at local
scale
To gauge the general response of rice crops to climate variability in each study area we first ran
models on the whole datasets with all the cultivars pooled together. The cultivar was also used
as an input variable to assess its relative weight. The models yielded 26.7% and 50.2% R-
squared in Saldaña and Villavicencio respectively. The R-squared obtained by each model is an
indication of the fraction of the dependent variable’s (yield) variance the model could explain
with the inputs [52]. Results of VI (Fig 2) illustrate the dominating role of the cultivar in
explaining yield relative to the climatic factors.

The selection of the cultivar to be sown is therefore a factor of major influence on final yields
in both areas.

In order to assess the importance of climatic factors in explaining yield, models were run a
second time on the whole datasets but without the cultivar among the input variables. The
models yielded 24.7% and 33.1% R-squared in Saldaña and Villavicencio respectively, suggest-
ing that climatic factors alone explain approximately one quarter to one third of the yield vari-
ability. The differences in R-squared between models with and without cultivar as an
explanatory variable was larger for Villavicencio than for Saldaña, suggesting that cultivar
selection is of greater importance in Villavicencio than in Saldaña. This finding can be related
to the difference in cropping systems, with rainfed rice (Villavicencio) being more sensitive to

Fig 2. Variables importance of CIF models including all cultivars. (a) Saldaña and (b) Villavicencio. Lowercase letters to the right of the
boxplots show the results of the Kruskal-Wallis test, with statistically similar variables grouped by the same letter

doi:10.1371/journal.pone.0161620.g002
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water availability and therefore responding more strongly the genotype by environment
interactions.

In order to gain deeper insight on the responses of specific cultivars to climate variability,
four region by cultivar specific models are presented in the following section: three cultivars in
Saldaña (irrigated rice) and one model on the main cultivar in the rainfed system in Villavicen-
cio. Table 5 summarizes the characteristics of the models:

Models F733 and F60 in Saldaña respectively explained 29.9% and 46.6% of the yield vari-
ability which supports the hypothesis that climate variability had significant impact on these
cultivars throughout the years. In turn, the Lagunas cultivar was exposed to the same climatic
conditions but the model resulted in a lower R-squared. This suggests that the Lagunas cultivar
was not as sensitive to climate variability as the other two. Lagunas has been reported to have
good adaptability to environment (low sensitivity) [70], an observation that qualitatively coin-
cides with the lower response of the model.

The VI outputs for the other three models are shown in Fig 3 with the relationships between
most relevant predictors and the output variable shown in Fig 4.

For Saldaña-F733 the most relevant predictor was the average minimum temperature in the
reproductive stage with a gradual negative impact on yield from 22.7°C onwards (Fig 4). The
negative effect of high minimum temperatures on rice yields was previously reported with sim-
ilar temperature ranges [66,71]. The other two predictors with a statistically higher VI than the
rest included the accumulated solar radiation in both ripening and reproductive stages, both
with positive relationship to the yield (S2 Fig). This suggests that, in Saldaña, cultivar F733

Fig 3. Boxplots of conditional permutation based VI scores using CIF for specific cultivars. In Saldaña for (a) cultivars F733 and (b)
F60, and in Villavicencio for (c) cultivar F174. Lowercase letters to the right of the boxplots show the results of the Kruskal-Wallis test, with
statistically similar variables grouped by the same letter.

doi:10.1371/journal.pone.0161620.g003

Table 5. CIF Models inputs and results.

Model Observations Runs Average R-squared R-squared standard deviation

Saldaña—F733 267 100 29.9% 7.9

Saldaña—F60 150 100 46.6% 8.6

Saldaña—Lagunas 187 100 6.9% 5.6

Villavicencio—F174 134 100 28.1% 11.9

doi:10.1371/journal.pone.0161620.t005
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Fig 4. Partial dependence plots of the most relevant predictors. (a) Saldaña-F733, (b) Saldaña-F60 and
(c) Villavicencio-F174. Tick marks represent individual observations.

doi:10.1371/journal.pone.0161620.g004
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tends to be limited by high night temperatures and a lack of solar radiation in the ripening
stage. Sensitivity to solar radiation in the ripening stage has been reported for this cultivar [72].
Other studies conducted under controlled environments also reported this phenomenon in
general for rice crops [35,73–75], as well as the combined effect with high nighttime tempera-
tures [71].

Agricultural practices in Saldaña are not consistent with the climatology of the region. Cli-
matological records in Saldaña emphasize two peaks of solar radiation each year. These typi-
cally occur from February to April, and from July to October. But farmers grow rice all along
the year, mostly because of irrigation district constraints with rotating access to water. As a
result, many rice crops are not able to exploit the optimal window of solar radiation in their
last growth stage. This situation is consistent with solar radiation emerging as one of the major
limiting factors. For farmers, these findings could help to open the debate on the reorganization
of the irrigation district in Saldaña to allow more flexibility on sowing dates.

In the case of Saldaña-F60, the average minimum temperatures in both the vegetative and
reproductive stages were the most relevant predictors (Fig 3) with a negative relationship to the
crop yield (Figs 4 and S2). These results are in line with the Saldaña-F733 model outputs, with
high nighttime temperatures being characteristic of Saldaña. The third most relevant predictor
was the average temperature in vegetative stage with a negative effect and a breaking point at
28°C (S2 Fig), consistently pointing to high temperatures in early stages as a limitation for cul-
tivar F60.

Finally for Villavicencio-F174, the frequency of significant rainfall (>10mm) in the vegeta-
tive stage came out as the most relevant variable (Fig 3). The relationship with yield was posi-
tive (Fig 4). This confirms the importance of water availability in rainfed rice crops, but also
emphasizes that the frequency of rainfall matters more than the total amount of precipitation
in this locality, especially in the vegetative stage. These results may foster the development of
water harvesting and complementary irrigation infrastructure in that area to adapt to unevenly
distributed rainfall.

In line with other studies in related domains, this study demonstrates that the use of empiri-
cal modelling techniques on observational data is well suited to help solving very concrete
problems, and that it supports learning from data to confirm or update the knowledge of deci-
sion makers [31,76,77]. Among the existing techniques, CIF models were reported as a flexible
and powerful alternative for these types of analyses [78,79].

It is noteworthy that models outputs were highly specific to each region-cultivar pair. These
results confirm that cultivars respond differently to climate variability [80], and suggest that
such analysis should be replicated for each local context. As in Muller et al. [79], we advocate
for extensive reuse of the approach at local scale for agronomists and researchers to analyze
their own data.

3.2. Understanding the relationship between weather patterns and rice
yield
The dataset can be further explored to characterize the relationships between yield and weather
patterns. As in section 3.1., we first explored the whole dataset in each study area to classify all
the cropping events based on weather conditions, without any other criteria of differentiation.
We then focused on how specific patterns affected the relative performances of individual
cultivars.

In Saldaña, we computed 15 clusters corresponding to 15 different crop-cycle long weather
patterns that have occurred over the last seven years in that region. The role of the different
raw series of climatic variables as the basis for the clusters is illustrated in Fig 5 where two
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Fig 5. Patterns of the daily series of the 5 climatic variables characterizing the clusters. (left) Cluster 1 and (right) cluster 15.
Individual patterns of each cropping event appear in grey, the black line represents the median of the cluster.

doi:10.1371/journal.pone.0161620.g005
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contrasting clusters are given as examples to show the differences between them. In the
highlighted example, cluster 15 shows that crops experienced low light, high nighttime temper-
atures, and high humidity in the late stages of the crop cycle, while the contrary was true for
cluster 1.

The number of observations belonging to each cluster as well as the distribution of the yields
achieved in each group are shown in Fig 6.

As the yield distributions observed in Fig 6 correspond to the actual yields achieved in the
past for each weather pattern (cluster), they show how well rice crops (across all cultivars)
responded to each weather pattern in terms of yield average and variability. Some clusters do
not significantly differ in yield (1, 5 and 6 for instance) while some others differ substantially
(as do cluster 2 and cluster 7).

Cluster 7 generally corresponds to events in the second semester of 2011, while cluster 2 is
marked by events of the first semester of 2008, both with similar proportions of the different
cultivars as compared to the whole dataset. Average yield for cluster 2 was 7,885 kg�ha-1,
whereas for cluster 7 it was 5,659 kg�ha-1, and the Kruskal-Wallis test confirmed that both yield
distributions differed significantly. This suggests that the weather pattern 7 was less favorable
for rice cropping in Saldaña than pattern 2, which is associated with higher yields. On the other
hand, it is interesting to note the differences between the patterns in term of yield variability.

Fig 6. Boxplots of the observed yield distributions in each cluster in Saldaña. Clusters are sorted from left to right in decreasing order
of median yield value. Lowercase letters above the boxplots show the results of the Kruskal-Wallis test, with statistically similar clusters
grouped by the same letter.

doi:10.1371/journal.pone.0161620.g006
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Under pattern 7, for example, yields were low but also showed low variability (StDev of 879
kg�ha-1) compared to pattern 3 where yields were highly variable (StDev of 1,327 kg�ha-1). For
farmers, this variability in expected yields under each pattern equates to uncertainty with
respect to the amount of harvested rice. Farmers have different profiles in terms of risk man-
agement, with some being able to take risks to bet on good weather and outstanding harvest
while others need to guarantee a minimum level of productivity to ensure adequate income.
The information generated by this cluster analysis can guide farmers in those choices. In our
example, if pattern 3 were observed, low risk farmers might prefer to grow another crop in lieu
rice to avoid potential crop failure.

Following the analysis of the complete dataset, each cluster was then analyzed separately to
see if the specific cultivars had an effect on yield distributions under each pattern. Here again,
in some clusters we noted a strong differentiation of the individual performance of the culti-
vars, while in some others, no significant differences were found. An example for each situation
is shown in Fig 7; in cluster 2, no significant differences in yields, confirmed by the Kruskal-
Wallis test, can be identified between the three cultivars. If climatic conditions of cluster 2 were
to occur, no specific recommendations could be made regarding cultivar choice given the culti-
vars studied.

In contrast, cluster 10 showed a much clearer pattern. The Kruskal-Wallis test showed that
significant differences exist between the distributions of observed yields of the three main culti-
vars: F60, F733 and F50. For this cluster, cultivar F50 resulted in low yields, whereas the yield
distributions of F60 and F733 suggested that they performed much better, with F773 showing
less variability than F60 and likely being the better option. When data exhibit such a clear pat-
tern, information can be released to farmers and rural advisors: based on records associated
with past experiences, some cultivars seem to be better suited than others if the specific condi-
tions associated with cluster 10 are anticipated.

Comparable results were obtained in Villavicencio, where 10 different patterns were identi-
fied. Significant differences were detected in the yields achieved under the conditions of the

Fig 7. Boxplots of the yield distributions by cultivar in Saldaña. (a) Cluster 2 and (b) cluster 10. Cultivars are sorted from left to right in
decreasing order of yield median value. Lowercase letters above the boxplots show the results of the Kruskal-Wallis test, with statistically
similar cultivars grouped by the same letter.

doi:10.1371/journal.pone.0161620.g007
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different patterns (S3 Fig). Highest yields were achieved under weather patterns 2 and 7 that
correspond, respectively, to sowings of April 2010 and May 2009. Yields were lower under
weather patterns 3 and 4 (clusters with less than ten data points were not considered), which
corresponded to sowings of 2011 and 2013. Both of these years had evenly distributed rainfall
centered in June, when the crops were in the vegetative stage. Like in Saldaña, significant differ-
ences between cultivars in terms of yield performance could be detected (see cluster 4, S4 Fig).
In other clusters, cultivars performed similarly.

The clustering analysis highlighted the diversity of weather patterns that rice crops can
experience in both regions and demonstrated how these determine achievable yields. Studies
on climate-yield relationships that use observational data often aggregate the data using either
geographical or administrative boundaries [2,81]. This aggregation results in a composition
effect with loss in the specificity of yield response at the farm level due to variations in sowing
and harvesting dates, as well as other variables [74]. The framework illustrated here enables
site-specific information to be extracted from disaggregated data, allowing climate variability
to more readily be considered by farmers and agronomists who wish to make weather and site-
specific recommendations on the choice of cultivar. As computational power and analysis tech-
niques allow for handling with more and more data, future studies should avoid the aggrega-
tion of large datasets in order to exploit the full detail and information present in the
disaggregated data.

3.3. Limitations of the study
Though the present research results in clear opportunities to improve rice agriculture in the
study regions, there are aspects that can be improved. In many cases, the datasets we used did
not include the original sowing dates, which we had to estimate by subtracting an averaged
number of days from the harvest date. The same approach was used to estimate growth stages,
with specific durations according to cultivars. This is not ideal, as the crop cycle and growth
stages durations can vary due to biotic or abiotic stresses, many of them caused by climatic fac-
tors. Even if models showed little sensitivity to small changes in the dates, in future studies,
datasets will need to provide measured sowing, panicle initiation and flowering dates to get a
better idea of the fluctuations in crop cycle length and be able to relate them to the climate
variability.

Furthermore, in this study we only considered climatic variables and this may have limited
the performance of the models. In future studies, datasets that include variables for soil charac-
teristics, climate and management should allow the models to explain greater amounts of yield
variability. Finally, to improve the spatial match between crop data and weather data, geo-ref-
erenced crop data and denser weather station networks are needed.

4. Conclusions
The analysis of large amounts of observational crop data combined with weather records
allowed us to quantify the effect of climate variability on rice. We identified the main limiting
climatic factors for rice production in two localities of Colombia for a set of specific cultivars.
The relatively high spatiotemporal resolution of the observational data and the use of data min-
ing techniques allowed the assessment of weather-yield relationships with high level of detail,
resulting in the ability to identify key predictor variables by growth stage. The clustering of
cropping events clearly highlighted links to climate variability, with past experiences serving as
collective knowledgebase for how well rice crops can perform under different weather patterns.
These results give an indication of the achievable yield that can be expected under each weather
pattern and, in some instances, what cultivars are best suited for each condition. Information
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of this type is useful for farmers to improve tactical decision making such as choosing a suitable
cultivar or postponing a crop establishment to wait for a more favorable weather pattern if the
current conditions are seen as less favorable.

Though we present interesting findings with regard to specific rice cultivars, the purpose of
the research presented here is not to contribute new knowledge on rice. The added value of this
effort is that it demonstrates how observational data can be used to efficiently generate action-
able and contextualized information for on-farm decision making.

As mentioned throughout the earlier sections, our results are consistent with previous stud-
ies. Overall, the explanatory power of the models coincides with a recent worldwide study
where year-to-year climate variability accounted for 32–39% of the yield variability, varying
significantly depending on the region-crop combinations, and reaching up to 60% for rice in
specific regions [17]. The similarity in findings further supports that the analysis of observa-
tional data using data mining techniques results in sensible information on crop response to
climate variability and, likewise, supports the reliability of the approach.

The time needed for this bottom-up [82] style of data mining to understanding agricultural
systems is much less than that required by more conventional experimental designs. The pro-
posed approach can be quickly updated and the outputs can serve as part of the toolbox of
agronomists and advanced farmers. It would allow them to pinpoint the specific factors that
are actually limiting the productivity in their particular conditions and provide a basis for
adjusting their practices accordingly.

Finally, the specificity of the response of each cultivar to the observed climate variability in
the model outputs is also promising. It points towards Genotype by Environment (G�E) inter-
action, and suggests that the approach used in this study is useful for characterizing part of this
interaction in commercial field data. Combined with the partial dependence plots of the rele-
vant factors, this information can serve as feedback for plant breeders as it depicts actual on-
farm behavior of commercial cultivars. Such feedback is a complement to mechanistic model-
ling for multi-site characterization of tolerances to climatic factors [83], and could guide breed-
ing strategies towards region-specific or weather-patterns-specific cultivars [30,67,84,85].

The findings associated with the weather pattern clusters are also highly complementary to
recent advances in seasonal climate forecasts, as highlighted by Meinke et al. [11] and Dilley
et al. [86]. The approach presented here would be especially value added when combined with
four-month seasonal forecasts, as models are now generating reliable seasonal forecasts for up
to five months [7]. In comparing the forecasted four months of weather to clusters of historical
records such as those derived in this study, it would be feasible to identify similarities between
expected and past conditions. This would enable the use of the historical data to support
improved recommendations on management practices according to successful past
experiences.

The techniques implemented in the previous sections push forward the idea of data-driven
agronomy as a means to positively impact agriculture by reducing the uncertainty regarding
what crop to grow, where, and when to grow it. Indeed, all the information generated out of
the observational data results in the expression of the collective knowledge gained from cumu-
lative farmer experiences, and can help farmers and technical assistants to better understand
the behavior of specific cultivars as well as how to better focus efforts to adapt to climate
variability.

Though climate variability and climate change will continue to affect agricultural productiv-
ity, significant advances in data collection procedures, computational capacity, and improved
analytics are occurring simultaneously. The use of data mining approaches on observational
datasets thus represents a real opportunity to address climate variability and to bolster agricul-
tural productivity. In order for this to be as effective as possible, however, data capture in
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commercial farms needs to be systematized through the use of data capture tools such as web
platforms and mobile phone applications as well as remote sensing techniques.
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S1 Fig. Histograms of the observed rice yield distributions in Saldaña (up) and Villavicen-
cio (down).
(TIF)

S2 Fig. Partial dependence plots of the relevant predictors in Saldaña. (a)(b) Saldaña-F733
and (c)(d) Saldaña-F60
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S3 Fig. Boxplots of the observed yields distributions in each cluster in Villavicencio. Clus-
ters are sorted from left to right in decreasing order median yield value. Lowercase letters
above the boxplots show the results of the Kruskal-Wallis test, with statistically similar clusters
grouped by the same letter.
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S4 Fig. Boxplots of the yield distributions by cultivar under cluster 4 for Villavicencio. Cul-
tivars are sorted from left to right in decreasing order of number of observations. Lowercase let-
ters above the boxplots show the results of the Kruskal-Wallis test, with statistically similar
cultivars grouped by the same letter.
(TIF)
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